SYNTHESIS AND PROTON NUCLEAR MAGNETIC RESONANCE SPECTRA OF SILVLMETHYL HALIDES

J. M. BELLAMA* AND A. G. MACDIARMID

John Harrison Laboratory of Chemistry and the Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (U.S.A.) (Received March 5th, 1969)

SUMMARY

The new compounds SiH_3CH_2Br and SiH_3CH_2I have been synthesized and characterized. Their proton NMR spectra and that of SiH_3CH_2CI have been examined and compared with those of the isomeric halides, CH_3SiH_2X , (X=Cl, Br, I).

INTRODUCTION

£

A study of the similarities and differences between the linkage formed by carbon to a given element and that formed by silicon to the same element has been the subject of numerous investigations. However, to the best of the authors' knowledge, no comparative studies have ever been performed on a series of carbon-functional organosilicon compounds and the isomeric series of silicon-functional compounds. The simplest series of this type are those derived from methylsilane, CH_3SiH_3 ; *i.e.*, the series composed of the carbon-functional silylmethyl halides** [(halomethyl)silanes], SiH_3CH_2X , and the series composed of the isomeric silicon functional methylsilyl halides** [halomethylsilanes], CH_3SiH_2X .

A study of the former series, in which X represents a halogen, was carried out in this investigation since it was felt to present considerable potential interest, especially in view of the fact that the isomeric $CH_3SiH_2X^1$ series and the end-members of the series, $CH_3-CH_2-X^2$ and $SiH_3-SiH_2-X^3$ have been well characterized.

EXPERIMENTAL

Apparatus and techniques

All work was carried out in a borosilicate (Pyrex) glass vacuum system. The apparatus and techniques were similar to those previously described⁴. Mass spectra were measured by means of a Consolidated Electrodynamics Corporation Model 21-130 mass spectrometer operating at an ionizing voltage of 76.0 eV and at an ionizing current of 20 μ A. Infrared spectra were obtained with a Perkin–Elmer Model

^{*} Present address: Department of Chemistry, University of Maryland, College Park, Maryland 20742 (U.S.A.)

^{**} Because the names of the isomers are indistinguishable verbally when the standard nomenclature [given in brackets] is used, the use of the name silylmethyl halide for the carbon-functional series, SiH₃-CH₂X, and methylsilyl halide for the silicon-functional series, CH₃SiH₂X, is preferred.

m/e Intensity ^a Possible ion m/e Inter (2_6) assignment ^c (2_6) assignment ^c (2_6) 28 66^b Si^+, N_2^{+b} 28 49^b 29 28 SiH^+ 28 49^b 30 10 SiH_2^+ 29 26 31 34 SiH_2^+ 31 17 41 15 $SiCH_2^+$ 41 17 42 17 $SiCH_2^+$ 43 100 43 $SiH_2CH_2^+$ CO_2^+b 44 55^b 44 95^c $SiH_2CH_2^+$ 43 107 19 65 13 $SiH_2^{-1}cH_2^+$ CO_2^+b 45^c 19 65 100 $SiH_2^{-1}cH_2^+$ CO_2^+b 45^c 19 67 25 $SiH_2^{-1}cH_2^+$ 107^c 19 24 67 $SiH_2^{-1}cH_2^+$ $Si^{-1}cH_2^+$ 107 19 24 <			>E1110		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m/e Intensity ^a (%)	Possible ion assignment ^c	a/m	Intensity ^a (%)	Possible ion assignment ^e
29 28 SiH^{+} 30 10 SiH^{+}_{3} 41 15 $SiCH^{+}_{3}$ 42 17 $SiCH^{+}_{3}$ 43 96 $SiHCH^{+}_{3}$ 44 95 ⁶ $SiHCH^{+}_{3}$ 45 13 $SiH_{3}CH^{+}_{3}$ 46 13 $SiH_{3}CH^{+}_{3}$ 47 11 $SiCH^{+}_{3}$ 48 95 ⁶ $SiH_{3}CH^{+}_{3}$ 49 95 ⁶ $SiH_{3}CH^{+}_{3}$ 40 107 19 65 100 $SiH_{3}CH^{+}_{3}$ 67 25 $SiH_{3}^{-3}CI^{+}_{3}(R)^{d}$ 67 25 $SiH_{3}^{-3}CI^{+}_{3}(R)^{d}$ 67 25 $SiH_{3}^{-3}CI^{+}_{3}(R)^{d}$ 67 26 $SiH_{3}^{-3}CI^{+}_{3}(R)^{d}$ 67 27 $SiH_{3}^{-3}CI^{+}_{3}(R)^{d}$ 67 29 26 $SiH_{3}^{-3}CI^{+}_{3}(R)^{d}$ 67 27 $SiH_{3}^{-3}CI^{+}_{3}(R)^{d}$ 67 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	28 49 ^b	Si ⁺ , N ⁺ ⁺	28	75 ^b	Si ⁺ , N ^{+b}
30 10 SiH_3^+ 30 10 31 34 SiH_3^+ 31 17 41 15 SiCH_4^+ 41 17 42 17 SiCH_2^+ 41 17 43 96 SiHCH_2^+ 42 19 43 95 SiHCH_2^+ 42 19 44 95 ^b SiHCH_2^+ 43 100 45 13 $\text{SiH}_3CH_2^+$ 43 100 63 81 $\text{SiH}_3CH_2^+$ 44 55 ^b 65 100 $\text{SiH}_3CH_1^+$ 107 19 66 100 $\text{SiH}_3^{-2}CH_1^+$ 107 19 67 25 $\text{SiH}_3^{-2}CH_1^+$ 107 19 67 25 $\text{SiH}_3^{-2}CH_1^+$ 107 19 67 25 $\text{SiH}_3^{-2}CH_1^+$ 107 19 77 11 $\text{SiCH}_3^{-3}CH_1^+$ 123 19	29 26	SiH ⁺	29	25	SiH ⁺
31 34 SiH_3^2 31 31 17 41 15 $SiCH^4$ 41 17 42 17 $SiCH_4^2$ 41 17 43 96 $SiHCH_2^2$ 42 19 44 95 ^b $SiH_2CH_3^2$, CO_2^{+b} 43 100 45 13 $SiH_3CH_3^4$ 44 55 ^b 19 63 81 $SiH_3CH_3^4$ 45 19 107 19 65 100 $SiH_3CH_3^4$ R^4 55 ^b 19 107 19 65 100 $SiH_3CH_3^4$ R^{-1} R^{-1} 107 19 66 $SiH_3^{-2}GI^+$ R^{-1} R^{-1} 107 19 67 25 $SiH_3^{-2}GI^+$ R^{-1} 107 19 24 77 11 $SiCH_3^{-3}CI^+$ R^{-1} 123 19 23 19 77 11 $SiCH_3^{-3}CI^+$ R^{-1} 123 19 23 19	30 10	SiH ⁺	30	19	SiH [‡]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 17	SiH	31	20	SiH ¹
42 17 SiCH $\frac{1}{2}$ 42 19 43 96 SiHCH $\frac{1}{2}$ 42 19 44 95 ^b SiH2CH $\frac{1}{2}$, CO $\frac{1}{2}^{b}$ 43 100 45 13 SiH3,CH $\frac{1}{2}$ 43 100 63 81 Si ³⁵ Cl ⁴ (R) ^d 45 19 65 100 SiH $_{3}^{2}$ Cl ⁴ (R) ^d 107 19 65 100 SiH $_{3}^{2}$ Cl ⁴ (R) ^d 107 19 67 25 SiH $_{3}^{3}$ Cl ⁴ (R) ^d 107 19 77 11 SiCH $_{3}^{3}$ Cl ⁴ (R) ^d 111 14 77 11 SiCH $_{3}^{3}$ Cl ⁴ (R) ^d 109 24	41 17	SiCH ⁺	41	22	SiCH ⁺
43 96 $SiHCH_{2}^{2}$ 43 100 44 95 ^b $SiH_{2}CH_{1}^{2}$, $CO_{2}^{2}^{b}$ 43 100 45 13 $SiH_{3}CH_{1}^{2}$ 45 19 63 81 $Si^{13}CI^{+}(R)^{d}$ 107 19 65 100 $SiH_{3}^{3}CI^{+}(R)^{d}$ 107 19 65 100 $SiH_{3}^{3}CI^{+}(R)^{d}$ 107 19 67 25 $SiH_{3}^{3}CI^{+}(R)^{d}$ 107 19 77 11 $SiCH_{3}^{3}CI^{+}(R)^{d}$ 111 14	42 19	SiCH ⁺	42	31	SiCH [‡]
44 95 ^b $SiH_2CH_1^2$, $CO_1^2^b$ 44 55 ^b 45 13 $SiH_3CH_1^2$ 45 19 63 81 $Si^{13}SCI^+(R)^d$ 45 19 65 100 $SiH_2^{3SCI^+}(R)^d$ 107 19 65 100 $SiH_2^{3SCI^+}(R)^d$ 107 19 67 25 $SiH_2^{3SCI^+}(R)^d$ 111 14 77 11 $SiCH_2^{3SCI^+}(R)^d$ 123 19	43 100	SiHCH;	43	100	SiHCH [‡]
45 13 $SiH_3CH_7^2$ 45 13 $SiH_3CH_7^2$ 45 19 63 81 $Si^{13}Cl^+(R)^d$ 45 19 65 100 $SiH_2^{13}Cl^+(R)^d$ 107 19 67 25 $SiH_2^{13}Cl^+(R)^d$ 111 14 77 11 $SiCH_2^{13}Cl^+(R)^d$ 112 19	44 55 ^h	SiH,CH [‡] , CO [‡] ^b	4	34 ^b	SiH ₂ CH ¹ ₂ , CO ¹ ₂
63 81 $S1^{35}C1^{+}(R)^{4}$ 107 19 65 100 $S1H_{2}^{35}C1^{+}, S1^{37}C1^{+}(R)^{4}$ 107 24 67 25 $S1H_{2}^{37}C1^{+}(R)^{4}$ 111 14 77 11 $S1CH_{2}^{35}C1^{+}$ 123 19	45 19	SiH, CH ⁵	45	94	SiH ₁ CH [‡]
65 100 $\text{SiH}_{2}^{35}\text{Cl}^{+}, \text{Si}^{37}\text{Cl}^{+}(\text{R})^{d}$ 109 24 67 25 $\text{SiH}_{2}^{37}\text{Cl}^{+}(\text{R})^{d}$ 111 14 77 11 $\text{SiCH}_{2}^{33}\text{Cl}^{+}$ 123 19	107 19	$Si^{70}Br + (R)^d$	127	15	+
67 25 $SiH_2^{-37}Cl^+(R)^d$ 111 14 77 11 $SiCH_2^{-35}Cl^+$ 123 19	109 24	SiH ₂ ⁷⁹ Br ⁺ , Si ⁸¹ Br ⁺ (R) ^d	155	61	Sil + (R) ^d
77 11 SICH ₂ ³⁵ Cl ⁺ 123 19	111 14	SiH, ⁸¹ Br ⁺ (R) ^d	157	14	$SiH_{2}I^{+}(R)^{d}$
	123 19	SiH,CH, ⁷⁹ Br ⁺ , SiCH, ⁸¹ Br ⁺	171	75	SiH ₂ CH ₂ I ⁺
79 70 SiH ₂ CH ₂ ²² Cl ^T 124 20	124 20	SiH,CH, ⁷⁹ Br ⁺ , SiHCH, ⁸¹ Br ⁺	172	13	SiH ₃ CH ₂ I ⁺
80 22 SiH ₃ CH ₂ ³¹ Cl ⁺ 125 18	125 18	SiH,CH, ^{B1} Br ⁺			
81 23 SiH ₂ CH ₂ ³⁷ Cl ⁺ 126 19	126 19	SiH ₃ CH ₂ ⁸¹ Br ⁺			

J. Organometal. Chem., 18 (1969) 275-284

TABLE I

not considered except for ³⁵Cl/³⁷Cl, and ⁷⁹Br/⁶¹Br.^d The symbol (R) represents rearranged fragments.

137-B "Infracord" or a Model 521 double beam grating spectrophotometer using a 10 cm gas cell fitted with KBr windows. Elemental analyses were performed by Schwarzkopf Micro-analytical Laboratory, Woodside, N.Y.

SiH₃CH₂F

Attempts to synthesize this compound were unsuccessful. The reaction of gaseous SiH_3CH_2I with AgF at room temperature yielded a mixture of products, which, from the IR spectrum, appeared to consist chiefly of SiF_4 and CH_2F_2 . Similarly, the use of other fluorides with SiH_3CH_2I or SiH_3CH_2CI under various conditions did not produce the desired compound.

SiH₃CH₂Cl

This compound was synthesized by preparing and subsequently reducing $SiCl_3CH_2Cl$ as previously described⁵.

Physical properties which had not been reported previously were measured. A freshly distilled sample (mol. wt. found 80.4, calcd. 80.6) melted sharply at -89.6° . Although a vapor pressure equation had previously been given for SiH₃CH₂Cl⁵, the relationship was redetermined in this study. The vapor pressure equation and related data were found to be in good agreement with that reported previously, *viz.*, log $P_{mm} = -1528.06/(t+273.16)+7.89270$; heat of vaporization, 6.99 kcal·mole⁻¹; Trouton's constant, 22.9 kcal·mole⁻¹·deg⁻¹; extrapolated boiling point, 31.7°. The reproducibility of the vapor pressure curve on increasing the temperature (to a maximum temperature of -16.0°) and then decreasing the temperature in a glassmercury tensimeter during a 14 h experiment showed that no detectable decomposition had occurred. This was confirmed by the observation that the IR spectrum and the mol. wt. of the sample underwent no change during the experiment.

TABLE 2

Band location (cm^{-1})			Vibration	Designation	Intensity
X = Cl	X=Br	X=I			
2950	2955	2962	C-H stretching	v ₁	m
2939	2945	2951	C-H stretching	v ₁₂	m
2187	2187	2190	Si-H stretching	v ₁₃	S
2165	2160	2162	Si-H stretching	V ₂	S
2153	2149	2153	Si-H stretching	v ₃	S
1412	1388	1383	CH ₂ scissors	V _A	m
1176	1118	1076	CH_2 wagging	Vs	w
1107	1054	1012	CH ₂ twisting	V14	w
948	952	952)	- 0	• •	(vs
933	930	925 }	SiH ₃ deformation	V6. V7. V15	{vs
924	920	919)	-	0, 1, 15	lvs
814	798	788	CH ₂ rocking	V16	m
767	737	734	Si-C stretching	Vo	w
720	678	657	C-X stretching	Vo	m
538	497	453	SiH ₃ rocking	V10, V17	m
1	a	a	SiH ₃ torsion	V.,	
¹ .	a	a	Si-C-X deformation	v ₁₈	

INFRARED SPECTRA OF SiH_3CH_2X (X = Cl, Br, I)

" Not observed.

The mass spectrum of SiH₃CH₂Cl was consistent with its proposed structure. Possible assignments of the major fragments (>10% relative abundance) observed are given in Table 1. A strong parent ion peak and several rearranged fragments were observed. Many of the m/e values could also be assigned in part to a different ion which, *e.g.*, contained an isotope other than that indicated. Absorption maxima, assignments, and intensities of the IR spectrum are given in Table 2. The spectrum of SiH₃CH₂Cl is reproduced in Fig. 1.

SiH₃CH₂Br

The unmeasured quantity of SiBr₃CH₂Br, prepared from 10 g (28 mmoles) of SiBr₄ according to the method of Yakubovitch⁶ was mixed with 10 ml of $(n-C_4H_9)_2O$ in a 250 ml flask fitted with a ground glass joint. To this was added a slurry of 4.7 g (125 mmoles) of LiAlH₄ in 125 ml of $(n-C_4H_9)_2O$ while the flask was cooled in an ice/ rock salt bath. After stirring for 90 min at 0° the volatile materials were distilled into the vacuum system through a trap held at -64° in which SiH₃CH₂Br condensed. Repeated distillation of this fraction through a -64° trap and out of a trap held at -78° yielded pure SiH₃CH₂Br (304 mg, 2.42 mmoles, 8.4% yield based on SiBr₄;

TABLE 3

Temp.	P (mm)	
(C)	Obsd.	Calcd.
-64.3	1.3	1.5
57.8	2.6	2.4
45.4	5.8	5.8
-31.8	13.7	13.8
22.9	22.9	23.0
	29.5	29.4
0.0	74.0	74.0
2.8	84.6	84.5
11.4	123.3	123.6
1.8	80.9 ⁻	80.7
10.3	45.4°	44.9
196.0	0.0 [€]	0.0

VAPOR PRESSURES OF SiH3CH2Bra.b

^a Duration of experiment 13 h. ^b The mol.wt. of the entire sample at the conclusion of the experiment was 125.6 (calcd. 125.1). ^c Pressure observed on decreasing the temperature.

J. Organometal. Chem., 18 (1969) 275-284

mol.wt. found 125.9, calcd. 125.1). The sample melted sharply at -91.9° . (Found: C, 9.96; H, 4.06. CH₅BrSi calcd.: C, 9.60; H, 4.03%.)

The vapor pressure of SiH₃CH₂Br was measured in an all-glass tensimeter fitted with a glass bourdon gauge which had been pre-treated for several hours with SiH₃CH₂Br. Vapor pressures at various temperatures are given in Table 3. In the range -64.3° to 11.4° they are represented by the equation: $\log P_{mm} = -1514.44/(t+273.16)+7.41383$. Additional values to those given in the Table were used in deriving the equation. The extrapolated boiling point is 60.9° , the heat of vaporization is $6.93 \text{ kcal} \cdot \text{mole}^{-1}$, and Trouton's constant is 20.7 kcal $\cdot \text{mole}^{-1} \cdot \text{deg}^{-1}$. The reproducibility of the vapor pressure curve on increasing and decreasing the temperature and the observation that the mol.wt. and IR spectrum of the sample did not change during the vapor pressure determination indicate that little, if any, thermal decomposition of the compound occurred during the experiment.

The mass spectrum of SiH₃CH₂Br was consistent with the proposed structure. Possible assignments of the major fragments (>10% relative abundance) observed are given in Table 1. A strong parent ion peak and several rearranged fragments were observed. Many of the m/e values could also be assigned in part to a different ion which contained an isotope other than that indicated. The absorption maxima, assignments, and intensities of the IR spectrum of SiH₃CH₂Br are given in Table 2. The spectrum was similar to that of SiH₃CH₂Cl given in Fig. 1.

SiH₃CH₂I

Into a 250 ml vessel containing sodium iodide (1.5 g, 10 mmoles) were distilled acetone (10 ml) and SiH_3CH_2Cl (502 mg, 6.23 mmoles; mol.wt. found 78.8, calcd. 80.6). After mild heating, sufficient to produce refluxing of acetone, for 1.5 h, the volatile material was distilled through a trap held at -96° in which SiH_3CH_2I (858 mg, 4.99 mmoles, 80.0% yield; mol.wt. found 169.4, calcd. 172.1) condensed.

TABLE 4

VAPOR	PRESSURES	OF	SiH ₃	CH-	Ia.P
	11000100	<u> </u>	01113	- L L 2	-

Temp.	P (mm)		
(°C)	Obsd.	Calcd.	
- 37.6	2.0	1.9	
-23.1	4.7	4.7	
10.3	10.3	10.3	
-2.5	15.9	15.8	
5.0	22.1	22.1	
13.5	35.9	35.2	
17.1	41.6	41.8	
23.5	58.7	58.8	
17.7	43.1°	42.9	
10.3	30.3°	30.3	
0.1	18.2	18.1	
- 31.3	2.8°	2.8	
- 196	0.0 ^c	0.0	

^a Duration of experiment was 16 h. ^b The mol.wt. of the entire sample at the conclusion of the experiment was 172.6 (calcd. 172.1). ^c Pressure observed on decreasing the temperature.

Completely pure SiH₃CH₂I (mol.wt. found 172.0) could be obtained by slowly distilling the crude SiH₃CH₂I from a trap held at -45° . Fractions having the same vapor pressure were combined. (Found: C, 7.13; H, 3.02; I, 73.0. CH₅ISi calcd.: C, 6.98; H, 2.92; I, 73.76%.)

The vapor pressure of SiH₃CH₂I was measured in an all-glass tensimeter fitted with a glass bourdon gauge which had been pretreated for several hours with SiH₃CH₂I. Vapor pressures at various temperatures are given in Table 4. In the range -37.6° to 23.5° they are represented by the equation log $P_{mm} = -1694.44/(t + 273.16) + 7.45829$. Additional values to those given in the Table were used in obtaining this relationship. The extrapolated boiling point is 97.0°, the heat of vaporization is 7.75 kcal·mole⁻¹, and Trouton's constant is 21.0 kcal·mole^{-1.}deg⁻¹. The reproducibility of the vapor pressure curve on increasing and decreasing the temperature and the observation that the mol.wt. and IR spectrum of the sample did not change during the vapor pressure determination indicate that little, if any, thermal decomposition of the compound occurred during the experiment.

The mass spectrum of SiH_3CH_2I was consistent with its proposed structure. Possible assignments of the major fragments (>10% relative abundance) observed are given in Table 1. A strong parent ion peak and several rearranged fragments were observed.

The absorption maxima, assignments, and intensities of the IR spectrum of SiH_3CH_2I are given in Table 2. The spectrum was similar to that of SiH_3CH_2CI given in Fig. 1.

Proton nuclear magnetic resonance spectra

The ¹H NMR spectra were measured by means of either a HR-60 or HA-60 Varian Associates spectrometer at 60 MHz. Compounds were measured in cyclohexane solution at approximately 5% by volume and at approximately 95% by volume. Chemical shift data were extrapolated to infinite dilution on the assumption that an approximately linear relationship between chemical shift and concentration would exist over the concentration range employed. Chemical shift and coupling constant data for SiH₃CH₂X (X=Cl, Br, I) are given in Table 5.

In order to obtain meaningful data for silicon-carbon bond shift studies, the chemical shifts of CH_3Cl , CH_3Br , and CH_3I were redetermined in this investigation under conditions identical to those used in the NMR studies of SiH_3CH_2X , viz.

Compound	δ(SiH ₃) (ppm)	Dilution shift ^b of SiH ₃ (Hz)	δ(CH₂) (ppm)	Dilution shift ^b of CH ₂ (Hz)	J(H-) Found	H') (Hz) d Calcd.	J(²⁹ Si–H) (Hz)	J(13C-H) (Hz)
SiH ₃ CH ₂ Cl	2.37	-6.2	- 1.50	-1.7	3.5	3.56	207.6	146.8
SiH ₃ CH ₂ Br	2.62	-7.3	- 1.14	-2.7	4.0	3.74	207.6	150.0
SiH ₃ CH ₂ I	3.07	-8.7	- 0.62	-3.8	4.0	4.00	205.8	149.0

TABLE 5 CHEMICAL SHIFT AND COUPLING CONSTANT DATA FOR SiH_3CH_2X (X = Cl. Br. 1)^a

^a Chemical shift data are given at infinite dilution with respect to cyclohexane as internal standard. A negative sign indicates a downfield shift from cyclohexane. ^b Dilution shift= $\delta(100\% \text{ concn.}) - \delta(0\% \text{ concn.})$.

in cyclohexane solvent extrapolated to infinite dilution. The chemical shift values obtained, with reference to cyclohexane, are CH_3Cl , -1.52 ppm; CH_3Br , -1.15 ppm; CH_3I , -0.60 ppm.

RESULTS AND DISCUSSION

Silylmethyl chloride, SiH₃CH₂Cl, was prepared by reducing SiCl₃CH₂Cl with LiAlH₄ as previously described⁵. The new compound SiH₃CH₂Br was synthesized in 8.6% yield from SiBr₄ by first converting the SiBr₄ to SiBr₃CH₂Br with CH₂N₂ followed by reduction with LiAlH₄. The new compound SiH₃CH₂Cl was obtained in 80% yield by the metathetical reaction between SiH₃CH₂Cl and NaI in acetone.

Repeated attempts to synthesize SiH_3CH_2F from SiH_3CH_2Cl or SiH_3CH_2I and AgF or KF under a variety of different experimental conditions were unsuccessful. For example, when SiH_3CH_2I vapor was passed over solid AgF at room temperature rapid cleavage of the Si–I, Si–H and Si–C bonds resulted to give SiF_4 and CH_2F_2 . It seems likely that SiH_3CH_2F may have been formed initially in these reactions, but that it then decomposed spontaneously as indicated:

$$\begin{array}{c} H_{3}Si-CH_{2} \rightarrow H_{3}SiF+CH_{2} \\ \downarrow \downarrow \\ \downarrow F \end{array}$$

This mode of decomposition is analogous to that postulated⁷ for the decomposition of $SiCl_3$ -CF₂-CFCl₂ to Cl₃SiF and CFCl=CFCl, the first step of which is believed to involve a transition state of the type:

$$Cl_3Si-CF_2-CFCl_2$$

The SiH₃F and CH₂ fragments formed above could then undergo additional reaction with the AgF to produce the observed products, SiF₄ and CH₂F₂. In this respect it might be noted that during the conversion of SiH₃I to SiH₃F by AgF, some fluorination of the Si-H bonds occurs and significant quantities of SiF₄ are formed⁸.

No sign of thermal decomposition of silylmethyl chloride, bromide, or iodide was observed during their handling in the vacuum system, or during vapor pressure measurement experiments up to approximately room temperature. Their mass and IR spectra were consistent with their formulation as silylmethyl halides.

The proton NMR spectra of SiH_3CH_2X were analyzed as first order A_3X_2 ; the effective symmetries of the molecules are therefore obviously increased by rapid rotation about the Si–C bond and hence in this respect the molecules are identical to the isomeric compounds CH_3SiH_2X (X=F, Cl, Br, I).

The α -proton (methylene) chemical shifts of the SiH₃CH₂X (X=Cl, Br, I) species bear a linear relationship to the Huggins electronegativity⁹ of the halogen, and they move to lower field (see Table 5) as the electronegativity of the halogen increases. In this respect they are similar to the chemical shifts found in the series CH₃X², SiH₃X¹⁰, and GeH₃X¹¹ and to the α -proton chemical shifts in the series CH₃CH₂X², SiH₃SiH₂X³, GeH₃GeH₂X¹², and CH₃SiH₂X¹ (X = Cl, Br, I). The α -proton chemical shifts of the methylsilyl halides therefore appear to be controlled primarily by the

inductive effects of the halogen.

The β -proton (SiH₃) chemical shifts of the SiH₃CH₂X species, however, move in the reverse direction to that found for the α -proton chemical shifts, and they move to higher field (see Table 5) as the electronegativity of the halogen increases. In this respect they also are similar to the β -proton chemical shifts found in the series CH₃-CH₂X², SiH₃SiH₂X³, GeH₃GeH₂X¹², and CH₃SiH₂X¹ (X=Cl, Br, I). Thus, the chemical shifts of these protons are controlled primarily not by inductive effects but by anisotropic and related effects.

TA	BI	E	6
		بد	v

DILUTION SHIFTS ^a	AND BOILING	POINTS OF ISOMERIC	SPECIES C	H ₃ SiH ₂ X and	SiH ₃ CH ₂ X

х	CH ₃ SiH ₂ X ^{b,c}			SiH ₃ CH ₂ X		
	SiH ₂ X	CH ₃	B.p.	CH₂X	SiH ₃	B.p.
	(Hz)	(Hz)	(°C)	(Hz)	(Hz)	(°C)
Cl	-0.4	-2.5	7	-1.7	-6.2	31.7 ⁴
Br	-1.9	-3.9	34	-2.7	-7.3	60.9
I	-5.1	-5.5	71.8	-3.8	-8.7	97.7

^a The negative sign indicates a downfield shift on going from a dilute to a concentrated solution. ^b NMR data (converted to 60 MHz) from ref. 1. ^c Boiling point data from ref. 15. ^d Boiling point determined in this work. Also given as 31.5° in ref. 5.

As can be seen from Table 6, the dilution shifts for both the α - and β -protons are greater in the carbon-functional SiH₃CH₂X compounds than in the corresponding silicon-functional isomers. If it is assumed that the interactions between the molecules of a given organosilicon halide are greater than those between the organosilicon halide and the solvent, cyclohexane, then the dilution shift data suggest that intermolecular interactions between SiH₃CH₂X molecules in the neat liquid are greater than those between CH₃SiH₂X molecules in the neat liquid. This is qualitatively consistent with the fact that, as shown in Table 6, the boiling point of each SiH₃CH₂X.

TABLE 7

INTERNAL CHEMICAL SHIFT DATA" FOR ISOMERIC CH3SiH2X AND SiH3CH2X COMPOUNDS

х	SiH ₃ CH ₂ X		CH ₃ SiH ₂ X		
	$\Delta_{\alpha\beta}^{\mathbf{x}}$ (ppm)	$(\Delta_{a\beta}^{\mathbf{x}} - \Delta) (ppm^{b})$	Δ_{zp}^{X} (ppm)	$(\Delta_{\alpha\beta}^{X} - \Delta) \text{ (ppmb)}$	
CI	0.87	-2.56	4.21	0.78	
Br	1.48	- 1.95	3.81	0.38	
I	2.45	~0.98	3.15	-0.28	

^a Internal chemical shift of MH₃M'H₂X (where M or M' is carbon or silicon) is denoted by $\Delta_{a\beta}^{X}$ where $\Delta_{a\beta}^{X} = |\delta(MH_3) - \delta(M'H_2X)|$. ^b $\Delta = |\delta(CH_3) - \delta(SiH_3)|$ in CH₃SiH₃ = 3.43 ppm¹. A positive value of ($\Delta_{a\beta} - \Delta$) shows that the SiH and CH resonances in the halide derivatives are farther apart than in the parent compound, CH₃SiH₃; a negative value shows that these resonances are closer together than in the parent compound.

species is significantly higher than that of the corresponding isomeric CH_3SiH_2X molecule. It might also be noted that within each series of isomers the magnitude of the dilution shift increases with increasing molecular weight. This is consistent with

the fact that the total intermolecular attractive forces within a series of isomers increases with increasing molecular weight, as exemplified by the increase in boiling points on going from chloride to iodide within a given series of isomers.

The internal chemical shift, $\Delta_{\alpha\beta}^{x}$, *i.e.*, the difference in chemical shifts of the α and β resonances, of a compound MH₃M'H₂X, in which M and M' may be the same or different Group IV elements, is given by the expression $\Delta_{\alpha\beta}^{x} = |\delta(MH_3) - \delta(M'H_2X)|$. Internal chemical shift data have been obtained for ethyl¹³, disilanyl (Si₂H₅X)³, digermanyl (Ge₂H₅X)¹², and methylsilyl (CH₃SiH₂X)¹ halides. The corresponding data for the isomeric species CH₃SiH₂X and SiH₃CH₂X are given in Table 7. In ethyl, disilanyl, digermanyl, and methylsilyl halides, the internal chemical shift, $\Delta_{\alpha\beta}^{x}$, decreases on proceeding from the fluoride to the iodide. However, in the series SiH₃CH₂X, $\Delta_{\alpha\beta}^{x}$, *increases* on proceeding from the chloride to iodide. This reverse

TABLE 8

MODIFICATION OF CHEMICAL SHIFTS IN CH3SiH3 UPON REPLACEMENT OF A HYDROGEN BY A HALOGEN®

x	α-Protons (ppm)		β-Protons (ppm)		
	$\delta(\text{Si-CH}_2-\text{X}) - 1.32$	δ (C-SiH ₂ -X)-(-2.11)	$\overline{\delta(\mathrm{H}_{3}\mathrm{Si-C-X})-(-2.11)}$	$\delta(H_3C-Si-X)-1.32$	
Cl	-2.81	-1.17	-0.39	-0.25	
Br	-2.46	-0.94	-0.56	-0.51	
I	- 1.94	-0.53	-0.81	-0.96	

^a In CH₃SiH₃ the chemical shift of the SiH protons is -2.11 ppm downfield from cyclohexane, and the chemical shift of the CH protons is 1.32 ppm upfield from cyclohexane at infinite dilution¹.

trend can be explained on examination of the data given in Table 8 which show the extent to which a given proton resonance (either CH₃ or SiH₃) in CH₃SiH₃ is shifted when a proton is replaced by a halogen. All protons move downfield, but for any given substituent, X, in a given compound, the β chemical shifts are modified to a much smaller extent than the α chemical shifts. Hence, trends in the internal chemical shift values are determined chiefly by the inductively-controlled chemical shifts of the α -protons. In SiH₃CH₂X species, the CH₂X resonance falls to high field of the SiH₃ resonance, and hence as the electronegativity of X is decreased the CH₂X resonance is to low field of the CH₃ resonance, and hence it moves closer (smaller $\Delta_{\alpha\beta}^{X}$) to the CH₃ resonance as the electronegativity of X decreases.

If the internal chemical shifts, $\Delta_{\alpha\beta}^{X}$, for SiH₃CH₂X and CH₃SiH₂X species are "corrected" for the internal chemical shift in the parent compound, CH₃SiH₃, then it can be seen from Table 7 that these "corrected" values of the internal chemical shifts, the quantity $\Delta_{\alpha\beta}^{X} - \Delta$, decrease in both series as the electronegativity of the halogen decreases.

Catenation shifts, e.g., a carbon-carbon bond shift², Δ_{C-C}^{X} , a silicon-silicon bond shift³, Δ_{Si-Si}^{X} , and a germanium-germanium bond shift¹², Δ_{Ge-Ge}^{X} , have previously been found on examining the proton spectra of analogous pairs of MH₃X and MH₃MH₂X (M=C, Si or Ge) compounds having an identical substituent, X. The above types of shift are defined by the relationship $\Delta_{M-M}^{X} = [\delta(MH_3) \text{ in } MH_3X] - [\delta(MH_2) \text{ in } MH_3MH_2X]$

and they therefore show the change in chemical shift of the MH₃ protons in MH₃X when, in a hypothetical process, one of the protons is "replaced" by a MH₃ group to give the corresponding MH₃MH₂X compound. With the exception of the iodide in the SiH₃I/SiH₃SiH₂I and GeH₃I/GeH₃GeH₂I systems, the replacement of a hydrogen in MH₃X by a MH₃ group causes a downfield shift of the α -protons. A somewhat similar phenomenon, *i.e.*, a carbon–silicon bond shift, Δ_{C-Si}^{X} , has been observed in the pairs of compounds SiH₃X/CH₃SiH₂X. The values are $\Delta_{C-Si}^{CI}=0.13$ ppm, $\Delta_{C-Si}^{Br}=0.32$ ppm, and $\Delta_{L-Si}^{I}=0.59$ ppm.

It was interesting to note in the present study that the "replacement" of a hydrogen in CH₃X by a SiH₃ group brought about a barely discernable change in chemical shift of the remaining CH protons, but a silicon-carbon bond shift, Δ_{Si-C}^{X} , could definitely be identified. The values obtained are $\Delta_{Si-C}^{Cl} = -0.03$ ppm, $\Delta_{Si-C}^{Br} = -0.01$ ppm, and $\Delta_{Si-C}^{l} = +0.02$ ppm. Although the absolute magnitude of the silicon-carbon bond shifts are strikingly small, the spread of 0.05 ppm from the chloride to the iodide is well outside the range of experimental error.

It has been noted¹ that the vicinal coupling constant J(H-H') in CH₃SiH₂X compounds is related to within 0.3 Hz to the electronegativities of the substituent X by the empirical relationship

$$J(H-H') = 4.4 \cdot [1.0 - 0.2 \cdot (\chi_X - \chi_H)]$$

in which χ_X and χ_H are the Huggins electronegativities of the substituent X and hydrogen, respectively. As can be seen from Table 5, the same relationship also holds remarkably well for the SiH₃CH₂X compounds. Certain relationships involving the ²⁹Si-H and ¹³C-H coupling constants have been noted in an earlier publication¹⁴.

ACKNOWLEDGEMENT

This work was supported in part by the Advanced Research Projects Agency, Office of the Secretary of Defense.

REFERENCES

- 1 E. A. V. EBSWORTH AND S. G. FRANKISS, Trans. Faraday Soc., 59 (1963) 1518.
- 2 J. R. CAVANAUGH AND B. P. DAILEY, J. Chem. Phys., 34 (1961) 1099.
- 3 C. H. VAN DYKE AND A. G. MACDIARMID, Inorg. Chem., 3 (1964) 1071.
- 4 L. G. L. WARD AND A. G. MACDIARMID, J. Amer. Chem. Soc., 82 (1960) 2151; J. Inorg. Nucl. Chem., 21 (1962) 287; 20 (1961) 345; A. D. CRAIG, J. V. URENOVITCH AND A. G. MACDIARMID, J. Chem. Soc., (1962) 548.
- 5 H. D. KAESZ AND F. G. A. STONE, J. Chem. Soc., (1957) 1433.
- 6 A. YA. YAKUBOVITCH AND V. A. GINSBURG, Zh. Obshch. Khim., 22 (1952) 1783.
- 7 R. N. HASZELDINE AND J. C. YOUNG, J. Chem. Soc., (1960) 4503.
- 8 H. J. EMELÉUS AND A. G. MADDOCK, J. Chem. Soc., (1946) 1131.
- 9 M. L. HUGGINS, J. Amer. Chem. Soc., 75 (1953) 4123.
- 10 E. A. V. EBSWORTH AND J. J. TURNER, J. Phys. Chem., 67 (1963) 805.
- 11 E. A. V. EBSWORTH, S. G. FRANKISS AND A. G. ROBIETTE, J. Mol. Spectrosc., 12 (1964) 299.
- 12 E. J. SPANIER AND A. G. MACDIARMID, J. Inorg. Nucl. Chem., in press.
- 13 B. P. DAILEY AND J. N. SCHOOLERY, J. Amer. Chem. Soc., 77 (1955) 3977.
- 14 T. YOSHIOKA AND A. G. MACDIARMID, J. Mol. Spectrosc., 21 (1966) 103.
- 15 C. EABORN, Organosilicon Compounds, Butterworths, London, 1960, p. 188-189.

J. Organometal. Chem., 18 (1969) 275-284